
Game Development Experiences with Spatial Audio

Game Development Experiences with Spatial Audio

Duncan Rowland
Department of Computing and Informatics

University of Lincoln, U.K.
drowland@lincoln.ac.uk

Abstract
The author has recently worked on a
series of successful games for
Codemasters Software Ltd. in the U.K.
Most notably he was responsible for
the audio engine in Colin McRae Rally
3.0 that was nominated for a Develop
Magazine award for Technical
Excellence. This paper recounts his
experiences developing spatialised
audio in the games industry. It begins
by introducing the concepts behind
spatial audio and how they can be
implemented and used in a gaming
environment to enhance the player’s
experience. Various pitfalls discovered
when using the standard sound
libraries are discussed and
workarounds suggested. The focus is
on Dolby 5.11 and DirectSound
although the general principles
described are common to all spatial
audio systems and middleware.

Introduction
In the games industry, spatial audio is
hot. The marketers want the Dolby
logo on the box as a selling point and a
recent Dolby figure stated that 30% of
hardcore gamers put their game audio
through a home cinema system with
Dolby digital [1]. There is no doubt
about it, spatial audio can add
tremendously to the realism and the
sense of immersion of a gaming
experience [2]. However, the task of

1 The term “Dolby 5.1” describes: five
positional speakers (front left, front centre,
front right, rear left and rear right); and one
non-positional speaker (the subwoofer) whose
base kick is more “felt” than it is heard.

including it should not be
underestimated, and as usual, the
earlier on in the development process
the task is put into the schedule, the
more likely it is to be done well[3]. It
is also helpful to get audio (with at
least placeholder samples) into an early
build so that it is not forgotten when it
comes to estimating CPU usage,
loading times and so on. It can also be
a useful debugging aid. By giving an
extra insight into the workings of a
game, the audio can be helpful in
tracking down bugs in the physics or
other parts of the game engine.

Sound development is one of those
strange topics, not quite an art, not
quite a science, which is so typical of
game development. Typically, sound
departments are tasked with obtaining
audio samples and describing to a
programmer how the sounds should be
played in the game (where they should
appear to come from, how quickly they
should fade, etc.) The intricacies of
how the spatial audio is actually
implemented are left up to the
programmer, who takes the samples
and specifications from audio
designers and transforms them into
code. As will be discussed, this
workflow can leave much scope for the
programmer to endlessly tweak
numerous parameters in the hopes of
achieving the effect the audio designer
is looking for. To aid communication
between the two, it is important they
share a common understanding and
language of how spatial audio works at
both the perceptual and mechanical
level.

Game Development Experiences with Spatial Audio

How we hear in 3D
The sound we receive at our ears has a
volume. This simply reflects how
much energy the waves have when
they reach the ear. For example, a bee
buzzing right next to your ear might
sound very loud (lots of received
energy), while an airplane flying
overhead may appear very quiet from
the ground (less received energy).
While obviously the total sound
created by a plane is much greater than
that created by a bee.

A common misconception is that by
simply varying the relative loudness
received by each ear you will be able
to control the perceived location of the
sound. This is not quite right. Consider
the following: if you sit listening to the
television, close your eyes and then
stick a finger in your right ear, you will
note that the television does not appear
to rotate around to your left hand side
(as you would expect if just volume
was used by the brain to generate
perceived location). Another example
can be obtained from the stereo
systems in many older cars (i.e. not Pro
Logic). These often used to have a
simple left/right “Pan” control, and a
front/back “Fade” control. By altering
these settings you (surprisingly?) did
not have complete control over the
location the sound appeared to be
coming from. Generally speaking, in
the absence of other cues one will
perceive the sound to be coming from
the speaker that is producing the signal
one hears the loudest. The other
speakers just increase the overall
volume. This is due to the brain
assuming that any Interaural Intensity
Difference (IID) as being caused by the
head acting as a baffle. So this means
the IID can be used to estimate the
direction a sound is coming from, but
not how far away it is.

So, how does the brain decode the
sound each ear receives so it can
decide the location of a sound? There
are 3 other main cues:

1) Interaural time difference
(ITD): Sounds on one’s left, will reach
the left ear slightly before they reach
the right (about 1ms difference). The
brain decodes this difference to
generate the direction that a sound is
coming from.

2) Muffling: High frequency
sounds lose their energy more quickly
than low frequency sounds (if you
listen to thunder you will notice that
nearby lightening causes a clap that is
bright and sharp, whereas far away
thunder is just a low rumble, or the
music from a far away party is just
audible as the dull thud of the base).

3) Head-Related Transfer
Functions: The pinnea and the folds
and lumpy bits inside the outer ear are
specially designed to reflect and baffle
sounds differently depending upon
which direction the sound originated.
Additionally, as had been said, the
head acts as a muffle so that some
frequencies present at the ear closest to
the source will be significantly
dampened by the time they reach the
farthest ear, and even one’s upper body
reflects sound back up to the ears
differently depending upon where the
sound originated. All these factors are
taken into account for each ear by the
brain. A Head-Related Transfer
Function (HRTF) models this process
computationally so that the sounds
emitted by the speaker can simulate
these effects. An individual’s actual
HRTF is unique, though a standard one
can be created (and one is built into
DirectSound) and used for the
surround sound signal processing to
create the illusion of a located sound

Game Development Experiences with Spatial Audio

source relative to the position of the
listener.

User Hardware
There are many sound output system
available but they mainly fall in three
main categories:

1) Mono – a single speaker. All
sounds appear to be coming from the
speaker itself. Many gamers use small
TVs with a single speaker and so a
game will still needs to sound good in
this minimal configuration.

2) Stereo – a two channel
(left/right) system sound. Sources can
appear to come from anywhere along
the line between the speakers (e.g. a
line through the head passing through
each ear in the case of headphones).

3) Surround – broadly speaking
this means a collection of speakers that
have carefully modulated signals sent
to them to create the illusion that
specific sounds are coming from
specific locations.

There are three main systems of
surround when it comes to developing
games: Dolby Pro Logic, Dolby Pro
Logic II and Dolby Digital 5.1.

Pro Logic [6] – encodes the four
signals to be sent to four speakers (left,
centre, right and surround) into a
regular two channel stereo signal. The
user requires a Pro Logic decoder to
extract these four signals and send
them to the appropriate speakers. The
speakers are placed in a diamond
configuration, and so note that any
sound that is faded completely to the
rear, will not be affected by panning.

Pro Logic II [7]– is similar to the
original Pro Logic except that five
channels are encoded (left, centre,

right, left surround, right surround)2 so
that a sound fully faded to the rear
could in theory be panned to the left
and right. An enhanced base signal is
also extracted, but not specifically
encoded. Improvements in this revision
cleaned up much of the signal
processing logic and as a result
produced a more stable sound field.

Dolby Digital 5.1 – keeps the six
signals for the six speakers encoded
separately in a digital stream. The
signals are kept separate (and not
crammed onto the two regular stereo
tracks) and as a result, this system
provides a higher sound quality (better
channel separator) than the Pro Logic
systems do. It also provides the highest
level of positional control and is
certainly the cleanest system
conceptually.

Pro Logic and Pro Logic II are the only
surround-sound systems available on
the PS2 and require low level coding to
generate the appropriate signals [5].
While it is possible to generate a true
spatial sound environment, personal
experience has shown that this method
is really only suitable for the
placement of spot effects and it is not
recommend if more detailed sound
source placement is important.
Additionally, two of the 48 PS2 voices
are required for each spatial audio
effect, so one can quickly run short of
voices if the technique is overused.

The Xbox and a PC (with an
appropriately equipped sound card)
can both support Dolby Digital 5.1 as

2 In addition the decoder claims to create a
“wider, more involving sound field” [4] even
when the signal is just a normal stereo signal,
however the effectiveness of this is debatable
and it certainly is not spatial in the sense that
the sounds appear to come from specific pre-
described locations in space.

Game Development Experiences with Spatial Audio

DirectSound supports it. Most of the
high- level surround-sound concepts are
common to the three systems and
middleware. This papers focuses on
Microsoft’s DirectSound in the
examples because it reveals the
important concepts in a clear way and
avoids some of the more tedious
intricacies of doing it all by hand as is
required on the PS2 (e.g. polarity
inversion and phase shifting to encode
position in Pro Logic).

Roll off
Sound systems are specified as
emitters (or sources) and a listener.
These respectively specify a location
for the sound to emanate from and a
point in the sound field from which to
sample the waves. As has already been
noted, a nearby bee can sound louder
than a far away airplane, and this is
due to the way sound fades away as the
distance between the sources and the
listener increases. By default
DirectSound halves the volume of the
sound received by a listener for every
meter the source is away (so at a
distance of 4 meters, the volume would
be 1/(2^4) or an 1/8th of the original
volume) and this is a reasonable
approximation of reality.

Setting the listener’s “roll off”
parameter can control the rate at which
the reduction in volume occurs (setting
a roll off of 3 makes sounds fade away
3 times as quickly). However, since
this parameter is associated with the
listener, it will affect all sounds
received by the listener and in general,
should be left alone!

Much better is to alter the minimum
distance setting. This is the distance at
which the sound will stop getting any
louder if it gets any closer. It also
provides a unit for the fading
calculation. Beneath a unit minimum
distance, there is no decrease in

volume (the sound remains at a
constant maximum volume). Further
away the sound fades: at twice the
minimum distance the audible volume
is ½ this maximum, at three times the
minimum distance the audible volume
is a ¼ the maximum, and so on.

There is also a maximum distance that
can be set and this is the distance at
which the sound will stop getting any
fainter as it moves further away. In
fact, to stop wasting processing time
on samples that cannot be heard, it is
usual to stop playing the sound
altogether when this distance is
reached3.

In summary, listing 1 specifies how
these values affect volume, and the
accompanying graph [8] compares the
effective falloff for a plane and a bee.

Audio Popping
One problem with the sound system as
describe is that sounds will suddenly
cut in and out if the MaxDistance is
lowered to stop sounds from playing in
the distance (this is very similar to the
visual popping of geometry that occurs
as in goes in out of culling). As an
example of this problem, consider a car
racing game where all the MinDistance
and MaxDistances are both set to be
100 yards (so the player would hear the
nearby cars, but everything further is
silent). In this example, there would be
a sudden jump in volume when the
sound source enters or leaves the 100-
yard radius (when it cuts in or out). It
might be possible to live with this
since the sound of the players own
engine sound will likely drown out this
glitch, or MinDistance could be set
lower so the sound would fade out
more rapidly. In general, MaxDistance
should be at least 10*MinDistance.

3 this is performed automatically by setting
DSBCAPS_MUTE3DATMAXDISTANCE

Game Development Experiences with Spatial Audio

//Global (Microsoft defaults)

//Sound Buffer
MinDistance = DS3D_DEFAULTMINDISTANCE = 1.0
MaxDistance = DS3D_DEFAULTMAXDISTANCE = 1000000000.0

//Listener
//Don’t change or you’ll need to adjust all your MinDistances too!
RolloffMultiplier = DS3D_DEFAULTROLLOFFFACTOR = 1.0 //(0.0 … 10.0)

float CalculateVolume(float distance) //(0.0 … 1.0)
{
 if(distance >= MaxDistance) return 0.0; // assuming mute at max

 float distance_multiplier = (distance / MinDistance) – 1.0;

 float volume_divisor = 2.0 * RolloffMultiplier * distance_multiplier

 if(volume_divisor <= 0.0) return 1.0; //Don’t fade at all if within minimum
 //distance or if RolloffMultiplier == 0

 return 1.0 / volume_divisor;
}

Listing 1: Spatialised Volume Calculation

Figure 1: Illustrates how difference minimum and maximum distances effect the
volume fade of different sound sources. Source: The DirectX SDK documentation [8].

Game Development Experiences with Spatial Audio

One specific problem encountered in
the development of the audio in Colin
McRae Rally 3.0, occurred in the
creation of spot effect of a spectator
helicopter that was required to swoop
past the car mid- level. The helicopter
needed to appear quite loud to the
player from relatively far away, so
initially the MinDistance value was
increased (to 10 yards in the first
instance). Within the 10-yard radius
the helicopter now appeared loud and
gradually faded away with distance. So
gradually in fact that by 100 yards it
would have only dropped by about
1/20th and so will still be quite loud
when it cuts in/out. To counteract this,
the MaxDistance could be increased to
1000 yards so that the helicopter sound
does not cut out until it is really quiet.
Unfortunately, this would mean that
the helicopter would now be audible
for the whole course (clearly
undesirable)4.

Even with all the parameter tweaking
in the world, the effect might never
sound quite right, and will need to be
solved programmatically. At this point
it might seem tempting to start
adjusting the roll off setting, however,
this is ill-advised, as it is a listener
setting and so will change the way all
the other samples sound too! Instead,
there now follow some suggested
workarounds to gain more control over
a sample’s volume.

1) The most successful way
discovered was to manually adjust the
helicopters volume. If the roll off is not
occurring fast enough, the programmer

4 As an aside, in the author’s experience this
kind of tweaking with Min/Max Distances can
be very time consuming and is required to be
performed for each audio mix. In general, it is
probably expedient to allow the sound
department to tweak these settings themselves
at runtime.

can calculate their own value of the
source, listener distance and quiet
down the volume appropriately. As a
further tip, if the MinDistance is very
large, then the sound will be played at
a constant volume no matter what the
distance is from the source to the
listener. This allows the programmer to
gain precise control of the sample ’s
volume while maintaining the spatial
information.

2) An alternative to manually
adjusting the volume directly is to
adjust the position of the helicopter’s
sound source. If it a required that the
helicopter fades more rapidly, then the
sound source can be moved more
quickly away from the listener. In
theory this will also change the
perceived location of the helicopter,
but this is unlikely to be a problem and
will likely just add extra excitement.
Similarly, the speed of the helicopter
will also be incorrect so any Doppler
shift will be exaggerated and care must
be taken that the sounds are not
distorted beyond that which is
desirable.

Frame of Reference
It is important to consider carefully the
frame of reference that is chosen for
your audio space. For example, if one
is implementing specialised car
sounds, various positioned samples for
the engine, wheels, etc. It might be a
good idea to save some processing
time by using the car as the frame of
reference. The player’s head could be
assumed to be at the origin (this would
be the centre of the car for example, at
the origin [0, 0]). The engine could be
in front of the player's head (fixed at
[0, 1] say), the left-rear wheel (fixed at
[-1,-1]) and so on. This would work
fine for the case where there is a single
car and the listener was positioned in
the driving seat. However, as more
sounds are added to the environment

Game Development Experiences with Spatial Audio

(waterfalls, explosions, etc) each of
these landscape effects would need to
be transform from the world (game)
co-ordinate system, into one based
around the car. Similarly, for replays
where the viewer is often static, you
would be required to recalculate the
position of the listener in the co-
ordinate system of the car every frame,
and so it is questionable how much
time would be save anyway. While this
is certainly all possible, it is probably
best to use the same co-ordinate
system for the audio space, as the rest
of the game uses for the graphics, and
or physics. Doing so will make
development more uniform (for
example, it is likely to be possible to
directly use position values from the
other sections of the development). For
example, in the case of a car game, it
would most likely be easy to look up
the position of the wheels, engine, and
driver every frame as these would be
required by the graphics system and so
exposed by the physics engine.

Figure 2: Fixing the listener at the
origin and placing various sound
sources relative to it is likely to cause
problems later (e.g. during replays or
when environmental sounds are
added).

A related, more general concern is
where the listener should be situated
when the view is from the 3rd person
perspective. If the listener is located at
the camera, as would seem initially the
most obvious thing to do, then in the
typical “chase-cam” view of a car
game (where the car is totally in front

of the viewer), then only the front
speakers in the surround system would
play the car sounds. In this instance, it
would probably be better to situate the
listener inside the car, even though the
view is from outside the car. This
would create a more absorbing
experience, although less accurate. In
the author’s experience, it has been
found that the listener should be
situated to enhance the feeling of
immersion rather than to reinforce the
viewpoint of the camera.

In-car view: Spatialised audio can
immerse the player in appropriate
wheel/engine /exhaust sounds.

Chase view: If the listener is placed
behind the car, all that will be heard is
the exhaust.

In chase view (3rd person), the listener
can be placed in-car to maintain the
immersive audio. To create a different
audio effect to that experience in-car,
the listener can be moved back slightly
to make the sound more “exhausty”.

Figure 3: Separation of view and
listener position

[0,0]

[-1,1]

[1,1]

Engine [0,1]

[-1,-1]

Exhaust [0,-1]

[1,-1]

Game Development Experiences with Spatial Audio

Flipping Artefacts
The location of the listener can cause
artefacts when sound sources move
from one side of the head to another. In
the DirectSound model a listener’s
position is a point in space, and
similarly a sound source has a single
point location. So if a source and a
listener are quite close, a source can
move from one side of a listener to
another very quickly (even rounding
errors can cause this to occur) with the
effect being a disconcerting rapid
flipping of the sound from full on one
side to full on the other. This effect is
not volume related and so cannot be
fixed by changing the roll off or
adjusting the Max/Min Distance. The
basic problem occurs because each
sound is defined to come from a single
point rather than an area and so it is
simply a case of trying to avoid putting
sound emitters right next to listeners
(one solution is to fix the location of a
sound source that is within the
listener’s minimum distance, so that it
is forced to be exactly co- incident with
the listener).

Reflected Sound
A similar effect is often seen in 3rd
person perspective games and is due to
a lack of consideration for reflected
sounds. For example, in a game played
from a first person perspective, where
a player is spinning close to a
waterfall, as the player turns, the sound
of the waterfall will rapidly flash from
one speaker to another. In the real
world the sound of a waterfall comes
from a large area as it is mostly made
up of sound that has been reflected
from the surrounding wall and seems
to envelop the listener rather than
coming from a specific point.
Workarounds for this include using
multiple locations and multiple
samples, or manually controlling the
position of the sound as the listener
moves, but perhaps the best way is to

use appropriate signal processing to
increase the reflected sounds (the Xbox
has a dedicated processor to handle
such effects).

Conclusion
As has been stated, realistic, spatialised
audio is a comparatively recent and
emerging area in game development.
Because of this, streamlined workflows
are still being developed and currently
audio is often one of the least effective
aspects of a game. Audio needs testing
just as much as the graphics and other
aspects of the game play do. Entire QA
departments are often equipped with
mono TVs (and have even been seen
playing the game with the sound
turned off!). It probably is not feasible
to provide every QA station with a
Dolby setup (though Dolby does sell a
system that allows surround-sound
audio through a set of standard
headphone) but there should certainly
be a few. Most importantly, the game
needs to be tested on a variety of audio
platforms that cover the range of
consumer equipment available. A
game may sound great on a Dolby
Sound System, but how does this
compare with the same game on a
stereo TV, or mono, or headphones?
Similarly, testing has the problem of
ecological validity since the location a
game is played will also affect how it
sounds. For example, compare the
acoustical properties of the average
living room to those of the average
sound studio of a testing department.
The benefits from investing in a
game’s audio are great. The increased
immersion that surround-sound can
offer truly lifts the gaming experience
into the sublime. At present when it
comes to interactive audio we are still
writing the rulebook as to what works
and what does not, and there is plenty
of room for exploration in this
increasingly important area.

Game Development Experiences with Spatial Audio

References:
[1] “Playing with Cinema Sound”, J.
Buser (Dolby), GameState – Playing to
Win in the Games Industry, Spring
2003.

[2] “The Complete Guide to Game
Audio”, Marks, A., CMP Books, 2001

[3] “Audio for Games: Planning,
Process and Production”, Brandon, A.,
New Riders, 2004.

[4] “Pro Logic vs. Pro Logic II vs.
Dolby Digital 5.1” Dolby
Knowledgebase,
http://dolby.custhelp.com (Aug 2003)

[5] “Technical Requirements for Dolby
Surround in Consumer Video Games”,
http://www.dolby.com/tech/trgames.pd
f (Aug 2003)

[6] “Dolby Surround Pro Logic
Decoder Principles of Operation”, R.
Dressler,
http://www.dolby.com/tech/whtppr.ht
ml (Aug 2003)

[7] “Dolby Surround Pro Logic II
Decoder Principles of Operation”, R.
Dressler,
http://www.dolby.com/tech/l.wh.0007.
PLIIops.html (Aug 2003)

[8] “Microsoft DirectX 9.0 SDK
Update”, Microsoft, August 2005,
http://msdn.microsoft.com/library/defa
ult.asp?url=/library/en-
us/directx9_c/directX/htm/minimuman
dmaximumdistances.asp

[9] “Mini-Cooper pagina minimale”,
http://digilander.libero.it/gipp1/auto/mi
ni/mini-minor-cooper.htm

